Inverse Reinforcement Learning Under Noisy Observations

نویسندگان

  • Shervin Shahryari
  • Prashant Doshi
چکیده

We consider the problem of performing inverse reinforcement learning when the trajectory of the expert is not perfectly observed by the learner. Instead, a noisy continuoustime observation of the trajectory is provided to the learner. This problem exhibits wide-ranging applications and the specific application we consider here is the scenario in which the learner seeks to penetrate a perimeter patrolled by a robot. The learner’s field of view is limited due to which it cannot observe the patroller’s complete trajectory. Instead, we allow the learner to listen to the expert’s movement sound, which it can also use to estimate the expert’s state and action using an observation model. We treat the expert’s state and action as hidden data and present an algorithm based on expectation maximization and maximum entropy principle to solve the non-linear, non-convex problem. Related work considers discrete-time observations and an observation model that does not include actions. In contrast, our technique takes expectations over both state and action of the expert, enabling learning even in the presence of extreme noise and broader applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Reinforcement Learning Under Noisy Observations (Extended Abstract)

We consider the problem of performing inverse reinforcement learning when the trajectory of the expert is not perfectly observed by the learner. Instead, noisy observations of the trajectory are available. We generalize the previous method of expectation-maximization for inverse reinforcement learning, which allows the trajectory of the expert to be partially hidden from the learner, to incorpo...

متن کامل

Multi-Robot Inverse Reinforcement Learning Under Occlusion with State Transition Estimation

Multi-robot inverse reinforcement learning (mIRL) is broadly useful for learning, from passive observations, the behaviors of multiple robots executing fixed trajectories and interacting with each other. In this paper, we relax a crucial assumption in IRL to make it better suited for wider robotic applications: we allow the transition functions of other robots to be stochastic and do not assume...

متن کامل

Preference elicitation and inverse reinforcement learning

We state the problem of inverse reinforcement learning in terms of preference elicitation, resulting in a principled (Bayesian) statistical formulation. This generalises previous work on Bayesian inverse reinforcement learning and allows us to obtain a posterior distribution on the agent’s preferences, policy and optionally, the obtained reward sequence, from observations. We examine the relati...

متن کامل

Preference Elicitation and Inverse Reinforcement Learning

We state the problem of inverse reinforcement learning in terms of preference elicitation, resulting in a principled (Bayesian) statistical formulation. This generalises previous work on Bayesian inverse reinforcement learning and allows us to obtain a posterior distribution on the agent’s preferences, policy and optionally, the obtained reward sequence, from observations. We examine the relati...

متن کامل

Efficient Probabilistic Performance Bounds for Inverse Reinforcement Learning

In the field of reinforcement learning there has been recent progress towards safety and high-confidence bounds on policy performance. However, to our knowledge, no methods exist for determining high-confidence safety bounds for a given evaluation policy in the inverse reinforcement learning setting—where the true reward function is unknown and only samples of expert behavior are given. We prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017